New resting-state fMRI related studies at PubMed

Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study

Sat, 05/20/2023 - 10:00

Neuroimage Clin. 2023 May 17;38:103434. doi: 10.1016/j.nicl.2023.103434. Online ahead of print.

ABSTRACT

Brain functional networks identified from resting functional magnetic resonance imaging (fMRI) data have the potential to reveal biomarkers for brain disorders, but studies of complex mental illnesses such as schizophrenia (SZ) often yield mixed results across replication studies. This is likely due in part to the complexity of the disorder, the short data acquisition time, and the limited ability of the approaches for brain imaging data mining. Therefore, the use of analytic approaches which can both capture individual variability while offering comparability across analyses is highly preferred. Fully blind data-driven approaches such as independent component analysis (ICA) are hard to compare across studies, and approaches that use fixed atlas-based regions can have limited sensitivity to individual sensitivity. By contrast, spatially constrained ICA (scICA) provides a hybrid, fully automated solution that can incorporate spatial network priors while also adapting to new subjects. However, scICA has thus far only been used with a single spatial scale (ICA dimensionality, i.e., ICA model order). In this work, we present an approach using multi-objective optimization scICA with reference algorithm (MOO-ICAR) to extract subject-specific intrinsic connectivity networks (ICNs) from fMRI data at multiple spatial scales, which also enables us to study interactions across spatial scales. We evaluate this approach using a large N (N > 1,600) study of schizophrenia divided into separate validation and replication sets. A multi-scale ICN template was estimated and labeled, then used as input into scICA which was computed on an individual subject level. We then performed a subsequent analysis of multiscale functional network connectivity (msFNC) to evaluate the patient data, including group differences and classification. Results showed highly consistent group differences in msFNC in regions including cerebellum, thalamus, and motor/auditory networks. Importantly, multiple msFNC pairs linking different spatial scales were implicated. The classification model built on the msFNC features obtained up to 85% F1 score, 83% precision, and 88% recall, indicating the strength of the proposed framework in detecting group differences between schizophrenia and the control group. Finally, we evaluated the relationship of the identified patterns to positive symptoms and found consistent results across datasets. The results verified the robustness of our framework in evaluating brain functional connectivity of schizophrenia at multiple spatial scales, implicated consistent and replicable brain networks, and highlighted a promising approach for leveraging resting fMRI data for brain biomarker development.

PMID:37209635 | PMC:PMC10209454 | DOI:10.1016/j.nicl.2023.103434

The impact of cannabidiol treatment on resting state functional connectivity, prefrontal metabolite levels and reward processing in recent-onset patients with a psychotic disorder

Fri, 05/19/2023 - 10:00

J Psychiatr Res. 2023 May 13;163:93-101. doi: 10.1016/j.jpsychires.2023.05.019. Online ahead of print.

ABSTRACT

The first clinical trials with cannabidiol (CBD) as treatment for psychotic disorders have shown its potential as an effective and well-tolerated antipsychotic agent. However, the neurobiological mechanisms underlying the antipsychotic profile of CBD are currently unclear. Here we investigated the impact of 28-day adjunctive CBD or placebo treatment (600 mg daily) on brain function and metabolism in 31 stable recent-onset psychosis patients (<5 years after diagnosis). Before and after treatment, patients underwent a Magnetic Resonance Imaging (MRI) session including resting state functional MRI, proton Magnetic Resonance Spectroscopy (1H-MRS) and functional MRI during reward processing. Symptomatology and cognitive functioning were also assessed. CBD treatment significantly changed functional connectivity in the default mode network (DMN; time × treatment interaction p = 0.037), with increased connectivity in the CBD (from 0.59 ± 0.39 to 0.80 ± 0.32) and reduced connectivity in the placebo group (from 0.77 ± 0.37 to 0.62 ± 0.33). Although there were no significant treatment effects on prefrontal metabolite concentrations, we showed that decreased positive symptom severity over time was associated with both diminishing glutamate (p = 0.029) and N-acetyl-aspartate (NAA; neuronal integrity marker) levels (p = 0.019) in the CBD, but not the placebo group. CBD treatment did not have an impact on brain activity patterns during reward anticipation and receipt or functional connectivity in executive and salience networks. Our results show that adjunctive CBD treatment of recent-onset psychosis patients induced changes in DMN functional connectivity, but not prefrontal metabolite concentrations or brain activity during reward processing. These findings suggest that DMN connectivity alteration may be involved in the therapeutic effects of CBD.

PMID:37207437 | DOI:10.1016/j.jpsychires.2023.05.019

Altered coupling of resting-state cerebral blood flow and functional connectivity in Meige syndrome

Fri, 05/19/2023 - 10:00

Front Neurosci. 2023 May 3;17:1152161. doi: 10.3389/fnins.2023.1152161. eCollection 2023.

ABSTRACT

INTRODUCTION: Meige syndrome (MS) is an adult-onset segmental dystonia disease, mainly manifested as blepharospasm and involuntary movement caused by dystonic dysfunction of the oromandibular muscles. The changes of brain activity, perfusion and neurovascular coupling in patients with Meige syndrome are hitherto unknown.

METHODS: Twenty-five MS patients and thirty age- and sex-matched healthy controls (HC) were prospectively recruited in this study. All the participants underwent resting-state arterial spin labeling and blood oxygen level-dependent examinations on a 3.0 T MR scanner. The measurement of neurovascular coupling was calculated using cerebral blood flow (CBF)-functional connectivity strength (FCS) correlations across the voxels of whole gray matter. Also, voxel-wised analyses of CBF, FCS, and CBF/FCS ratio images between MS and HC were conducted. Additionally, CBF and FCS values were compared between these two groups in selected motion-related brain regions.

RESULTS: MS patients showed increased whole gray matter CBF-FCS coupling relative to HC (t = 2.262, p = 0.028). In addition, MS patients showed significantly increased CBF value in middle frontal gyrus and bilateral precentral gyrus.

CONCLUSION: The abnormal elevated neurovascular coupling of MS may indicate a compensated blood perfusion in motor-related brain regions and reorganized the balance between neuronal activity and brain blood supply. Our results provide a new insight into the neural mechanism underlying MS from the perspective of neurovascular coupling and cerebral perfusion.

PMID:37207180 | PMC:PMC10188939 | DOI:10.3389/fnins.2023.1152161

Resting-State fMRI Can Detect Alterations in Seizure Onset and Spread Regions in Patients with Non-Lesional Epilepsy: A Pilot Study

Fri, 05/19/2023 - 10:00

Front Neuroimaging. 2023;2:1109546. doi: 10.3389/fnimg.2023.1109546. Epub 2023 May 5.

ABSTRACT

INTRODUCTION: Epilepsy is defined as non-lesional (NLE) when a lesion cannot be localized via standard neuroimaging. NLE is known to have a poor response to surgery. Stereotactic electroencephalography (sEEG) can detect functional connectivity (FC) between zones of seizure onset (OZ) and early (ESZ) and late (LSZ) spread. We examined whether resting-state fMRI (rsfMRI) can detect FC alterations in NLE to see whether noninvasive imaging techniques can localize areas of seizure propagation to potentially target for intervention.

METHODS: This is a retrospective study of 8 patients with refractory NLE who underwent sEEG electrode implantation and 10 controls. The OZ, ESZ, and LSZ were identified by generating regions around sEEG contacts that recorded seizure activity. Amplitude synchronization analysis was used to detect the correlation of the OZ to the ESZ. This was also done using the OZ and ESZ of each NLE patient for each control. Patients with NLE were compared to controls individually using Wilcoxon tests and as a group using Mann-Whitney tests. Amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), degree of centrality (DoC), and voxel-mirrored homotopic connectivity (VMHC) were calculated as the difference between NLE and controls and compared between the OZ and ESZ and to zero. A general linear model was used with age as a covariate with Bonferroni correction for multiple comparisons.

RESULTS: Five out of 8 patients with NLE showed decreased correlations from the OZ to the ESZ. Group analysis showed patients with NLE had lower connectivity with the ESZ. Patients with NLE showed higher fALFF and ReHo in the OZ but not the ESZ, and higher DoC in the OZ and ESZ. Our results indicate that patients with NLE show high levels of activity but dysfunctional connections in seizure-related areas.

DISCUSSION: rsfMRI analysis showed decreased connectivity directly between seizure-related areas, while FC metric analysis revealed increases in local and global connectivity in seizure-related areas. FC analysis of rsfMRI can detect functional disruption that may expose the pathophysiology underlying NLE.

PMID:37206659 | PMC:PMC10194331 | DOI:10.3389/fnimg.2023.1109546

A revised perspective on the evolution of the lateral frontal cortex in primates

Fri, 05/19/2023 - 10:00

Sci Adv. 2023 May 19;9(20):eadf9445. doi: 10.1126/sciadv.adf9445. Epub 2023 May 19.

ABSTRACT

Detailed neuroscientific data from macaque monkeys have been essential in advancing understanding of human frontal cortex function, particularly for regions of frontal cortex without homologs in other model species. However, precise transfer of this knowledge for direct use in human applications requires an understanding of monkey to hominid homologies, particularly whether and how sulci and cytoarchitectonic regions in the frontal cortex of macaques relate to those in hominids. We combine sulcal pattern analysis with resting-state functional magnetic resonance imaging and cytoarchitectonic analysis to show that old-world monkey brains have the same principles of organization as hominid brains, with the notable exception of sulci in the frontopolar cortex. This essential comparative framework provides insights into primate brain evolution and a key tool to drive translation from invasive research in monkeys to human applications.

PMID:37205762 | PMC:PMC10198639 | DOI:10.1126/sciadv.adf9445

Task-induced changes in brain entropy

Fri, 05/19/2023 - 10:00

medRxiv. 2023 May 2:2023.04.28.23289255. doi: 10.1101/2023.04.28.23289255. Preprint.

ABSTRACT

Entropy indicates irregularity of a dynamic system with higher entropy indicating higher irregularity and more transit states. In the human brain, regional entropy has been increasingly assessed using resting state fMRI. Response of regional entropy to task has been scarcely studied. The purpose of this study is to characterize task-induced regional brain entropy (BEN) alterations using the large Human Connectome Project (HCP) data. To control the potential modulation by the block-design, BEN of task-fMRI was calculated from the fMRI images acquired during the task conditions only and then compared to BEN of rsfMRI. Compared to resting state, task-performance unanimously induced BEN reduction in the peripheral cortical area including both the task activated regions and task non-specific regions such as the task negative area and BEN increase in the centric part of the sensorimotor and perception networks. Task control condition showed large residual task effects. After controlling the task non-specific effects using the control BEN vs task BEN comparison, regional BEN showed task specific effects in target regions.

PMID:37205436 | PMC:PMC10187354 | DOI:10.1101/2023.04.28.23289255

Neuro-Environmental Interactions: a time sensitive matter

Fri, 05/19/2023 - 10:00

bioRxiv. 2023 May 5:2023.05.04.539456. doi: 10.1101/2023.05.04.539456. Preprint.

ABSTRACT

The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). We implemented an interpretable XGBoost-Shapley Additive Explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages: 13-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, cupper, nickel and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford Atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated ( p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.

PMID:37205412 | PMC:PMC10187306 | DOI:10.1101/2023.05.04.539456

Functional Connectivity Magnetic Resonance Imaging Sequences in Patients With Postsurgical Persistent Spinal Pain Syndrome Type 2 With Implanted Spinal Cord Stimulation Systems: A Safety, Feasibility, and Validity Study

Fri, 05/19/2023 - 10:00

Neuromodulation. 2023 May 16:S1094-7159(23)00618-9. doi: 10.1016/j.neurom.2023.04.465. Online ahead of print.

ABSTRACT

BACKGROUND: Chronic pain has been associated with alterations in brain connectivity, both within networks (regional) and between networks (cross-network connectivity). Functional connectivity (FC) data on chronic back pain are limited and based on heterogeneous pain populations. Patients with postsurgical persistent spinal pain syndrome (PSPS) type 2 are good candidates for spinal cord stimulation (SCS) therapy. We hypothesize that 1) FC magnetic resonance imaging (fcMRI) scans can be safely obtained in patients with PSPS type 2 with implanted therapeutic SCS devices and that 2) their cross-network connectivity patterns are altered and involve emotion and reward/aversion functions.

MATERIALS AND METHODS: Resting-state (RS) fcMRI (rsfcMRI) scans were obtained from nine patients with PSPS type 2 implanted with therapeutic SCS systems and 13 age-matched controls. Seven RS networks were analyzed, including the striatum.

RESULTS: Cross-network FC sequences were safely obtained on a 3T MRI scanner in all nine patients with PSPS type 2 with implanted SCS systems. FC patterns involving emotion/reward brain circuitry were altered as compared with controls. Patients with a history of constant neuropathic pain, experiencing longer therapeutic effects of SCS, had fewer alterations in their connectivity patterns.

CONCLUSIONS: To our knowledge, this is the first report of altered cross-network FC involving emotion/reward brain circuitry in a homogeneous population of patients with chronic pain with fully implanted SCS systems, on a 3T MRI scanner. All rsfcMRI studies were safe and well tolerated by all nine patients, with no detectable effects on the implanted devices.

PMID:37204362 | DOI:10.1016/j.neurom.2023.04.465

Paediatric obesity and metabolic syndrome associations with cognition and the brain in youth: Current evidence and future directions

Thu, 05/18/2023 - 10:00

Pediatr Obes. 2023 May 18:e13042. doi: 10.1111/ijpo.13042. Online ahead of print.

ABSTRACT

Obesity and components of the metabolic syndrome (MetS) are associated with differences in brain structure and function and in general and food-related cognition in adults. Here, we review evidence for similar phenomena in children and adolescents, with a focus on the implications of extant research for possible underlying mechanisms and potential interventions for obesity and MetS in youth. Current evidence is limited by a relative reliance on small cross-sectional studies. However, we find that youth with obesity and MetS or MetS components show differences in brain structure, including alterations in grey matter volume and cortical thickness across brain regions subserving reward, cognitive control and other functions, as well as in white matter integrity and volume. Children with obesity and MetS components also show some evidence for hyperresponsivity of food reward regions and hyporesponsivity of cognitive control circuits during food-related tasks, altered brain responses to food tastes, and altered resting-state connectivity including between cognitive control and reward processing networks. Potential mechanisms for these findings include neuroinflammation, impaired vascular reactivity, and effects of diet and obesity on myelination and dopamine function. Future observational research using longitudinal measures, improved sampling strategies and study designs, and rigorous statistical methods, promises to further illuminate dynamic relationships and causal mechanisms. Intervention studies targeted at modifiable biological and behavioural factors associated with paediatric obesity and MetS can further inform mechanisms, as well as test whether brain and behaviour can be altered for beneficial outcomes.

PMID:37202148 | DOI:10.1111/ijpo.13042

Edge-centric functional network analyses reveal disrupted network configuration in autism spectrum disorder

Thu, 05/18/2023 - 10:00

J Affect Disord. 2023 May 16;336:74-80. doi: 10.1016/j.jad.2023.05.025. Online ahead of print.

ABSTRACT

BACKGROUND: Neuroscientific evidence suggests that the pathological symptoms associated with autism spectrum disorders (ASD) are not confined to a single brain region but involve networks of the brain on a larger spatial scale. Analyzing diagrams of edge-edge interactions could provide important perspectives on the organization and function of complex systems.

METHODS: Resting-state fMRI data from 238 ASD patients and 311 healthy controls (HCs) were included in the current study. We used the thalamus as the mediating node to calculate the edge functional connectivity (eFC) of the brain network and compared the ASD subjects and HCs.

RESULTS: Compared with the HCs, the ASD subjects exhibited abnormalities in the central node thalamus and four brain regions (amygdala, nucleus accumbens, pallidum and hippocampus), as well as in the eFC formed by the inferior frontal gyrus (IFG) (or middle temporal gyrus (MTG)). In addition, ASD subjects showed variable characteristics of the eFC between nodes in different networks.

CONCLUSIONS: The changes in these brain regions may be due to the disturbance in the reward system, which leads to coherence in the instantaneous comovement of the functional connections formed by these brain regions in ASD. This notion also reveals a functional network feature between the cortical and subcortical regions in ASD.

PMID:37201902 | DOI:10.1016/j.jad.2023.05.025

Proceedings of the First Pediatric Coma and Disorders of Consciousness Symposium by the Curing Coma Campaign, Pediatric Neurocritical Care Research Group, and NINDS: Gearing for Success in Coma Advancements for Children and Neonates

Thu, 02/09/2023 - 11:00

Neurocrit Care. 2023 Feb 9. doi: 10.1007/s12028-023-01673-w. Online ahead of print.

ABSTRACT

This proceedings article presents the scope of pediatric coma and disorders of consciousness based on presentations and discussions at the First Pediatric Disorders of Consciousness Care and Research symposium held on September 14th, 2021. Herein we review the current state of pediatric coma care and research opportunities as well as shared experiences from seasoned researchers and clinicians. Salient current challenges and opportunities in pediatric and neonatal coma care and research were identified through the contributions of the presenters, who were Jose I. Suarez, MD, Nina F. Schor, MD, PhD, Beth S. Slomine, PhD Erika Molteni, PhD, and Jan-Marino Ramirez, PhD, and moderated by Varina L. Boerwinkle, MD, with overview by Mark Wainwright, MD, and subsequent audience discussion. The program, executively planned by Varina L. Boerwinkle, MD, Mark Wainwright, MD, and Michelle Elena Schober, MD, drove the identification and development of priorities for the pediatric neurocritical care community.

PMID:36759418 | DOI:10.1007/s12028-023-01673-w

Age-related intrinsic functional connectivity underlying emotion utilization

Thu, 02/09/2023 - 11:00

Cereb Cortex. 2023 Feb 9:bhad023. doi: 10.1093/cercor/bhad023. Online ahead of print.

ABSTRACT

Previous studies investigated the age-related positivity effect in terms of emotion perception and management, whereas little is known about whether the positivity effect is shown in emotion utilization (EU). If yes, the EU-related intrinsic functional connectivity and its age-associated alterations remain to be elucidated. In this study, we collected resting-state functional magnetic resonance imaging data from 62 healthy older adults and 72 undergraduates as well as their self-ratings of EU. By using the connectome-based predictive modeling (CPM) method, we constructed a predictive model of the positive relationship between EU self-ratings and resting-state functional connectivity. Lesion simulation analyses revealed that the medial-frontal network, default mode network, frontoparietal network, and subcortical regions played key roles in the EU-related CPM. Older subjects showed significantly higher EU self-ratings than undergraduates, which was associated with strengthened connectivity between the left dorsolateral prefrontal cortex and bilateral frontal poles, and between the left frontal pole and thalamus. A mediation analysis indicated that the age-related EU network mediated the age effect on EU self-ratings. Our findings extend previous research on the age-related "positivity effect" to the EU domain, suggesting that the positivity effect on the self-evaluation of EU is probably associated with emotion knowledge which accumulates with age.

PMID:36758953 | DOI:10.1093/cercor/bhad023

Electroconvulsive therapy-induced neuroimaging alterations measured by cerebral blood flow in adolescents with major depressive disorder

Thu, 02/09/2023 - 11:00

J Affect Disord. 2023 Feb 7:S0165-0327(23)00180-5. doi: 10.1016/j.jad.2023.02.027. Online ahead of print.

ABSTRACT

BACKGROUND: Electroconvulsive therapy (ECT) is a novel treatment strategy for adolescents with major depressive disorder (MDD). However, its related neurobiological changes associated with ECT remain undetermined.

OBJECTIVE: To elucidate the impact of ECT on the regional cerebral blood flow (CBF), and to identify alterations in the CBF associated with clinical outcomes in adolescents with MDD.

METHODS: Fifty-two treatment-naive adolescents who had experienced their first episode of MDD and 36 healthy controls (HCs) were recruited. To assess baseline parameters, all subjects were scanned with arterial spin labeling resting-state functional magnetic resonance imaging (ASL-fMRI) at the beginning of the study. Subsequently, 27 MDD adolescents were re-scanned after 2 weeks after ECT. CBF imaging was used for the prediction of specific clinical outcomes. Lastly, the associations between alterations seen on brain imaging alterations after ECT and ECT clinical efficacy (ΔHAMD scores) were determined.

RESULTS: Relative to HCs, adolescents with MDD exhibited reduced CBF in the left medial superior frontal gyrus (SFGmed) (cluster = 243, peak t = -3.9373, and P < 0.001) and augmented CBF in the right percental gyrus (PerCG) (cluster = 321, peak t = 4.3332, and P < 0.001) at baseline. Following ECT, MDD adolescents exhibited reduced CBF in the right fusiform gyrus (FFG) (cluster = 309, peak t = -4.346, and P < 0.001) and left hippocampus (HIP) (cluster = 290, peak t = -4.706, and P < 0.001), and enhanced CBF in the left orbital part of the inferior frontal gyrus (ORBinf) (cluster = 214, peak t = 4.073, and P < 0.001). Correlation analysis suggested an inverse association between ΔHAMD scores and CBF values in the left ORBinf (R2 = 0.196, P = 0.021).

CONCLUSIONS: It was found that ECT resulted in alterations in CBF in specific brain areas, highlighting the significance of ORBinf in ECT pathophysiology in MDD adolescents.

PMID:36758871 | DOI:10.1016/j.jad.2023.02.027

Aberrant functional connectivity of the bed nucleus of the stria terminalis and its age dependence in children and adolescents with social anxiety disorder

Thu, 02/09/2023 - 11:00

Asian J Psychiatr. 2023 Feb 1;82:103498. doi: 10.1016/j.ajp.2023.103498. Online ahead of print.

ABSTRACT

BACKGROUND: Social anxiety disorder (SAD) is a prevalent and impairing mental disorder among children and adolescents. The bed nucleus of the stria terminalis (BNST) plays a critical role in anxiety disorders, including valence surveillance and hypervigilance for potential threats. However, the role of BNST and its related functional network in children and adolescents with SAD has not been fully investigated. This study examined the aberration of BNST's functional connectivity and its age dependence in adolescents with SAD.

METHODS: Using a sample of 75 SAD patients and 75 healthy controls (HCs) children aged 9-18 years old, we delineated the group-by-age interaction of BNST-seeded functional connectivity (FC) during resting state and movie-watching. The relationships between BNST-seeded FC and clinical scores were also examined.

RESULTS: During movie viewing, the FC between the right BNST and the left amygdala, bilateral posterior cingulate cortex (PCC), bilateral superior temporal cortex, and right pericalcarine cortex showed a diagnostic group-by-age interaction. Compared to HCs, SAD patients showed a significant enhancement of the above FC at younger ages. Meanwhile, they showed an age-dependent decrease in FC between the right BNST and left amygdala. Furthermore, for SAD patients, FC between the right BNST and left amygdala during movie viewing was positively correlated with separation anxiety scores.

CONCLUSIONS: The right BNST plays an essential role in the aberrant brain functioning in children and adolescents with SAD. The atypicality of BNST's FC has remarkable age dependence in SAD, suggesting an association of SAD with neurodevelopmental traits.

PMID:36758449 | DOI:10.1016/j.ajp.2023.103498

Controlling the familywise error rate in widefield optical neuroimaging of functional connectivity in mice

Thu, 02/09/2023 - 11:00

Neurophotonics. 2023 Jan;10(1):015004. doi: 10.1117/1.NPh.10.1.015004. Epub 2023 Feb 3.

ABSTRACT

SIGNIFICANCE: Statistical inference in functional neuroimaging is complicated by the multiple testing problem and spatial autocorrelation. Common methods in functional magnetic resonance imaging to control the familywise error rate (FWER) include random field theory (RFT) and permutation testing. The ability of these methods to control the FWER in optical neuroimaging has not been evaluated.

AIM: We attempt to control the FWER in optical intrinsic signal imaging resting-state functional connectivity using both RFT and permutation inference at a nominal value of 0.05. The FWER was derived using a mass empirical analysis of real data in which the null is known to be true.

APPROACH: Data from normal mice were repeatedly divided into two groups, and differences between functional connectivity maps were calculated with pixel-wise t -tests. As the null hypothesis was always true, all positives were false positives.

RESULTS: Gaussian RFT resulted in a higher than expected FWER with either cluster-based (0.15) or pixel-based (0.62) methods. t -distribution RFT could achieve FWERs of 0.05 (cluster-based or pixel-based). Permutation inference always controlled the FWER.

CONCLUSIONS: RFT can lead to highly inflated FWERs. Although t -distribution RFT can be accurate, it is sensitive to statistical assumptions. Permutation inference is robust to statistical errors and accurately controls the FWER.

PMID:36756004 | PMC:PMC9896098 | DOI:10.1117/1.NPh.10.1.015004

Revealing the spatiotemporal requirements for accurate subject identification with resting-state functional connectivity: a simultaneous fNIRS-fMRI study

Thu, 02/09/2023 - 11:00

Neurophotonics. 2023 Jan;10(1):013510. doi: 10.1117/1.NPh.10.1.013510. Epub 2023 Feb 3.

ABSTRACT

SIGNIFICANCE: Brain fingerprinting refers to identifying participants based on their functional patterns. Despite its success with functional magnetic resonance imaging (fMRI), brain fingerprinting with functional near-infrared spectroscopy (fNIRS) still lacks adequate validation.

AIM: We investigated how fNIRS-specific acquisition features (limited spatial information and nonneural contributions) influence resting-state functional connectivity (rsFC) patterns at the intra-subject level and, therefore, brain fingerprinting.

APPROACH: We performed multiple simultaneous fNIRS and fMRI measurements in 29 healthy participants at rest. Data were preprocessed following the best practices, including the removal of motion artifacts and global physiology. The rsFC maps were extracted with the Pearson correlation coefficient. Brain fingerprinting was tested with pairwise metrics and a simple linear classifier.

RESULTS: Our results show that average classification accuracy with fNIRS ranges from 75% to 98%, depending on the number of runs and brain regions used for classification. Under the right conditions, brain fingerprinting with fNIRS is close to the 99.9% accuracy found with fMRI. Overall, the classification accuracy is more impacted by the number of runs and the spatial coverage than the choice of the classification algorithm.

CONCLUSIONS: This work provides evidence that brain fingerprinting with fNIRS is robust and reliable for extracting unique individual features at the intra-subject level once relevant spatiotemporal constraints are correctly employed.

PMID:36756003 | PMC:PMC9896013 | DOI:10.1117/1.NPh.10.1.013510

Altered gray matter volume and functional connectivity in adolescent borderline personality disorder with non-suicidal self-injury behavior

Wed, 02/08/2023 - 11:00

Eur Child Adolesc Psychiatry. 2023 Feb 8. doi: 10.1007/s00787-023-02161-4. Online ahead of print.

ABSTRACT

BACKGROUND AND OBJECTIVES: Non-suicidal self-injury (NSSI) behavior is one of the characteristics of borderline personality disorder (BPD) in adolescents. Prior studies have shown that adolescents with BPD may have a unique pattern of brain alterations. The purpose of this study was to investigate the alterations in brain structure and function including gray matter volume and resting-state functional connectivity in adolescents with BPD, and to assess the association between NSSI behavior and brain changes on neuroimaging in adolescents with BPD.

METHODS: 53 adolescents with BPD aged 12-17 years and 39 age-gender matched healthy controls (HCs) were enrolled into this study. Brain magnetic resonance imaging (MRI) was acquired with both 3D-T1 weighted structural imaging and resting-state functional imaging. Voxel-based morphometry (VBM) analysis for gray matter volume and seed-based functional connectivity (FC) analysis were performed for assessing gray matter volume and FC. Clinical assessment for NSSI, mood, and depression was also obtained. Correlative analysis of gray matter alterations with self-injury or mood scales were performed.

RESULTS: There were reductions of gray matter volume in the limbic-cortical circuit and default mode network in adolescents with BPD as compared to HCs (FWE P < 0.05, cluster size ≥ 1000). The diminished gray matter volumes in the left putamen and left middle occipital gyrus were negatively correlated with NSSI in adolescents with BPD (r = - 0.277 and P = 0.045, r = - 0.422 and P = 0.002, respectively). Furthermore, there were alterations of FC in these two regions with diminished gray matter volumes (voxel P < 0.001, cluster P < 0.05, FWE corrected).

CONCLUSIONS: Our results suggest that diminished gray matter volume of the limbic-cortical circuit and default mode network may be an important neural correlate in adolescent BPD. In addition, the reduced gray matter volume and the altered functional connectivity may be associated with NSSI behavior in adolescents with BPD.

PMID:36754875 | DOI:10.1007/s00787-023-02161-4

How Discrimination Gets Under the Skin: Biological Determinants of Discrimination Associated With Dysregulation of the Brain-Gut Microbiome System and Psychological Symptoms

Wed, 02/08/2023 - 11:00

Biol Psychiatry. 2022 Oct 28:S0006-3223(22)01703-6. doi: 10.1016/j.biopsych.2022.10.011. Online ahead of print.

ABSTRACT

BACKGROUND: Discrimination is associated with negative health outcomes as mediated in part by chronic stress, but a full understanding of the biological pathways is lacking. Here we investigate the effects of discrimination involved in dysregulating the brain-gut microbiome (BGM) system.

METHODS: A total of 154 participants underwent brain magnetic resonance imaging to measure functional connectivity. Fecal samples were obtained for 16S ribosomal RNA profiling and fecal metabolites and serum for inflammatory markers, along with questionnaires. The Everyday Discrimination Scale was administered to measure chronic and routine experiences of unfair treatment. A sparse partial least squares-discriminant analysis was conducted to predict BGM alterations as a function of discrimination, controlling for sex, age, body mass index, and diet. Associations between discrimination-related BGM alterations and psychological variables were assessed using a tripartite analysis.

RESULTS: Discrimination was associated with anxiety, depression, and visceral sensitivity. Discrimination was associated with alterations of brain networks related to emotion, cognition and self-perception, and structural and functional changes in the gut microbiome. BGM discrimination-related associations varied by race/ethnicity. Among Black and Hispanic individuals, discrimination led to brain network changes consistent with psychological coping and increased systemic inflammation. For White individuals, discrimination was related to anxiety but not inflammation, while for Asian individuals, the patterns suggest possible somatization and behavioral (e.g., dietary) responses to discrimination.

CONCLUSIONS: Discrimination is attributed to changes in the BGM system more skewed toward inflammation, threat response, emotional arousal, and psychological symptoms. By integrating diverse lines of research, our results demonstrate evidence that may explain how discrimination contributes to health inequalities.

PMID:36754687 | DOI:10.1016/j.biopsych.2022.10.011

Dysfunctional Cortical Gradient Topography in Treatment-Resistant Major Depressive Disorder

Wed, 02/08/2023 - 11:00

Biol Psychiatry Cogn Neurosci Neuroimaging. 2022 Oct 31:S2451-9022(22)00270-1. doi: 10.1016/j.bpsc.2022.10.009. Online ahead of print.

ABSTRACT

BACKGROUND: Treatment-resistant depression (TRD) refers to patients with major depressive disorder who do not remit after 2 or more antidepressant trials. TRD is common and highly debilitating, but its neurobiological basis remains poorly understood. Recent neuroimaging studies have revealed cortical connectivity gradients that dissociate primary sensorimotor areas from higher-order associative cortices. This fundamental topography determines cortical information flow and is affected by psychiatric disorders. We examined how TRD impacts gradient-based hierarchical cortical organization.

METHODS: In this secondary study, we analyzed resting-state functional magnetic resonance imaging data from a mindfulness-based intervention enrolling 56 patients with TRD and 28 healthy control subjects. Using gradient extraction tools, baseline measures of cortical gradient dispersion within and between functional brain networks were derived, compared across groups, and associated with graph theoretical measures of network topology. In patients, correlation analyses were used to associate measures of cortical gradient dispersion with clinical measures of anxiety, depression, and mindfulness at baseline and following the intervention.

RESULTS: Cortical gradient dispersion was reduced within major intrinsic brain networks in patients with TRD. Reduced cortical gradient dispersion correlated with increased network degree assessed through graph theory-based measures of network topology. Lower dispersion among default mode, control, and limbic network nodes related to baseline levels of trait anxiety, depression, and mindfulness. Patients' baseline limbic network dispersion predicted trait anxiety scores 24 weeks after the intervention.

CONCLUSIONS: Our findings provide preliminary support for widespread alterations in cortical gradient architecture in TRD, implicating a significant role for transmodal and limbic networks in mediating depression, anxiety, and lower mindfulness in patients with TRD.

PMID:36754677 | DOI:10.1016/j.bpsc.2022.10.009

Hippocampal Hyperconnectivity to the Visual Cortex Predicts Treatment Response

Wed, 02/08/2023 - 11:00

Schizophr Bull. 2023 Feb 8:sbac213. doi: 10.1093/schbul/sbac213. Online ahead of print.

ABSTRACT

BACKGROUND: Converging lines of evidence point to hippocampal dysfunction in psychosis spectrum disorders, including altered functional connectivity. Evidence also suggests that antipsychotic medications can modulate hippocampal dysfunction. The goal of this project was to identify patterns of hippocampal connectivity predictive of response to antipsychotic treatment in 2 cohorts of patients with a psychosis spectrum disorder, one medication-naïve and the other one unmedicated.

HYPOTHESIS: We hypothesized that we would identify reliable patterns of hippocampal connectivity in the 2 cohorts that were predictive of treatment response and that medications would modulate abnormal hippocampal connectivity after 6 weeks of treatment.

STUDY DESIGN: We used a prospective design to collect resting-state fMRI scans prior to antipsychotic treatment and after 6 weeks of treatment with risperidone, a commonly used antipsychotic medication, in both cohorts. We enrolled 44 medication-naïve first-episode psychosis patients (FEP) and 39 unmedicated patients with schizophrenia (SZ).

STUDY RESULTS: In both patient cohorts, we observed a similar pattern where greater hippocampal connectivity to regions of the occipital cortex was predictive of treatment response. Lower hippocampal connectivity of the frontal pole, orbitofrontal cortex, subcallosal area, and medial prefrontal cortex was predictive of treatment response in unmedicated SZ, but not in the medication-naïve cohort. Furthermore, greater reduction in hippocampal connectivity to the visual cortex with treatment was associated with better clinical response.

CONCLUSIONS: Our results suggest that greater connectivity between the hippocampus and occipital cortex is not only predictive of better treatment response, but that antipsychotic medications have a modulatory effect by reducing hyperconnectivity.

PMID:36752830 | DOI:10.1093/schbul/sbac213

Pages